Search results for "Neutrophil homeostasis"
showing 3 items of 3 documents
Frontline Science: Mast cells regulate neutrophil homeostasis by influencing macrophage clearance activity
2019
Abstract The receptor tyrosine kinase cKit and its ligand stem cell factor are essential for mast cells (MC) development and survival. Strains with mutations affecting the Kit gene display a profound MC deficiency in all tissues and have been extensively used to investigate the role of MC in both physiologic and pathologic conditions. However, these mice present a variety of abnormalities in other immune cell populations that can affect the interpretation of MC-related responses. C57BL/6 KitW-sh are characterized by an aberrant extramedullary myelopoiesis and systemic neutrophilia. MC deficiency in KitW-sh mice can be selectively repaired by engraftment with in vitro-differentiated MC to va…
Current insights into neutrophil homeostasis
2012
Neutrophil granulocytes represent the first immunologic barrier against invading pathogens, and neutropenia predisposes to infection. However, neutrophils may also cause significant collateral inflammatory damage. Therefore, neutrophil numbers are tightly regulated by an incompletely understood homeostatic feedback loop adjusting the marrow's supply to peripheral needs. Granulocyte colony-stimulating factor (G-CSF) is accepted to be the major determinant of neutrophil production, and G-CSF levels have, soon after its discovery, been described to be inversely correlated with neutrophil counts. A neutrophil sensor, or "neutrostat," has, therefore, been postulated. The prevailing feedback hypo…
Steady-state neutrophil homeostasis is dependent on TLR4/TRIF signaling
2013
Polymorphonuclear neutrophil granulocytes (neutrophils) are tightly controlled by an incompletely understood homeostatic feedback loop adjusting the marrow's supply to peripheral needs. Although it has long been known that marrow cellularity is inversely correlated with G-CSF levels, the mechanism linking peripheral clearance to production remains unknown. Herein, the feedback response to antibody induced neutropenia is characterized to consist of G-CSF–dependent shifts of marrow hematopoietic progenitor populations including expansion of the lin-/Sca-1/c-kit (LSK) and granulocyte macrophage progenitor (GMP) compartments at the expense of thrombopoietic and red cell precursors. Evidence is …